Big data from dynamic pricing: A smart approach to tourism demand forecasting
Andrea Guizzardi,
Flavio Maria Emanuele Pons,
Giovanni Angelini and
Ercolino Ranieri
International Journal of Forecasting, 2021, vol. 37, issue 3, 1049-1060
Abstract:
Suppliers of tourist services continuously generate big data on ask prices. We suggest using this information, in the form of a price index, to forecast the occupation rates for virtually any time-space frame, provided that there are a sufficient number of decision makers “sharing” their pricing strategies on the web. Our approach guarantees great transparency and replicability, as big data from OTAs do not depend on search interfaces and can facilitate intelligent interactions between the territory and its inhabitants, thus providing a starting point for a smart decision-making process. We show that it is possible to obtain a noticeable increase in the forecasting performance by including the proposed leading indicator (price index) into the set of explanatory variables, even with very simple model specifications. Our findings offer a new research direction in the field of tourism demand forecasting leveraging on big data from the supply side.
Keywords: Regional forecasting; Daily forecasting; Leading indicator; Advance booking; Dynamic pricing; Hotelier’s expectations about tourism demand (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4) Track citations by RSS feed
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301825
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:3:p:1049-1060
DOI: 10.1016/j.ijforecast.2020.11.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().