Interpretable sports team rating models based on the gradient descent algorithm
Jan Lasek and
Marek Gagolewski
International Journal of Forecasting, 2021, vol. 37, issue 3, 1061-1071
Abstract:
We introduce several new sports team rating models based on the gradient descent algorithm. More precisely, the models can be formulated by maximising the likelihood of match results observed using a single step of this optimisation heuristic. The proposed framework is inspired by the prominent Elo rating system, and yields an iterative version of ordinal logistic regression, as well as different variants of Poisson regression-based models. This construction makes the update equations easy to interpret, and adjusts ratings once new match results are observed. Thus, it naturally handles temporal changes in team strength. Moreover, a study of association football data indicates that the new models yield more accurate forecasts and are less computationally demanding than corresponding methods that jointly optimise the likelihood for the whole set of matches.
Keywords: Rating systems; Association football; Match outcome forecasting; Gradient descent; Poisson regression; Ordinal logistic regression; Elo rating system (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301849
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:3:p:1061-1071
DOI: 10.1016/j.ijforecast.2020.11.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().