Dimensionality reduction in forecasting with temporal hierarchies
Peter Nystrup,
Erik Lindström,
Jan K. Møller and
Henrik Madsen
International Journal of Forecasting, 2021, vol. 37, issue 3, 1127-1146
Abstract:
Combining forecasts from multiple temporal aggregation levels exploits information differences and mitigates model uncertainty, while reconciliation ensures a unified prediction that supports aligned decisions at different horizons. It can be challenging to estimate the full cross-covariance matrix for a temporal hierarchy, which can easily be of very large dimension, yet it is difficult to know a priori which part of the error structure is most important. To address these issues, we propose to use eigendecomposition for dimensionality reduction when reconciling forecasts to extract as much information as possible from the error structure given the data available. We evaluate the proposed estimator in a simulation study and demonstrate its usefulness through applications to short-term electricity load and financial volatility forecasting. We find that accuracy can be improved uniformly across all aggregation levels, as the estimator achieves state-of-the-art accuracy while being applicable to hierarchies of all sizes.
Keywords: Temporal aggregation; Reconciliation; Spectral decomposition; Shrinkage; Load forecasting; Realized volatility (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301898
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:3:p:1127-1146
DOI: 10.1016/j.ijforecast.2020.12.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().