Sparse estimation of dynamic principal components for forecasting high-dimensional time series
Daniel Peña,
Ezequiel Smucler and
Victor J. Yohai
International Journal of Forecasting, 2021, vol. 37, issue 4, 1498-1508
Abstract:
We present the sparse estimation of one-sided dynamic principal components (ODPCs) to forecast high-dimensional time series. The forecast can be made directly with the ODPCs or by using them as estimates of the factors in a generalized dynamic factor model. It is shown that a large reduction in the number of parameters estimated for the ODPCs can be achieved without affecting their forecasting performance.
Keywords: L1 penalization; Lasso; Principal components; Dynamic factor models; Cross validation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:4:p:1498-1508
DOI: 10.1016/j.ijforecast.2020.10.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().