EconPapers    
Economics at your fingertips  
 

Improving the wisdom of crowds with analysis of variance of predictions of related outcomes

Ville A. Satopää

International Journal of Forecasting, 2021, vol. 37, issue 4, 1728-1747

Abstract: Decision-makers often collect and aggregate experts’ point predictions about continuous outcomes, such as stock returns or product sales. In this article, we model experts as Bayesian agents and show that means, including the (weighted) arithmetic mean, trimmed means, median, geometric mean, and essentially all other measures of central tendency, do not use all information in the predictions. Intuitively, they assume idiosyncratic differences to arise from error instead of private information and hence do not update the prior with all available information. Updating means in terms of unused information improves their expected accuracy but depends on the experts’ prior and information structure that cannot be estimated based on a single prediction per expert. In many applications, however, experts consider multiple stocks, products, or other related items at the same time. For such contexts, we introduce ANOVA updating – an unsupervised technique that updates means based on experts’ predictions of multiple outcomes from a common population. The technique is illustrated on several real-world datasets.

Keywords: Bayesian updating; Central tendency; Judgmental forecasts; Information aggregation; Model averaging (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000625
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:4:p:1728-1747

DOI: 10.1016/j.ijforecast.2021.03.011

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:37:y:2021:i:4:p:1728-1747