Forecast combination for VARs in large N and T panels
Ryan Greenaway-McGrevy
International Journal of Forecasting, 2022, vol. 38, issue 1, 142-164
Abstract:
We propose a new forecast combination method for panel data vector autoregressions that permit limited forms of parameterized heterogeneity (including fixed effects or incidental trends). Models are fitted using bias-corrected least squares in order to attenuate the effects of small sample bias of forecast loss. We begin by constructing a general estimator of the quadratic forecast risk of the averaged model that is asymptotically unbiased as both n (cross sections) and T (time series) grow large. Armed with this result, we propose a specific weighting mechanism, in which weights are chosen to minimize the estimated quadratic risk of the averaged forecast error. The objective function in this minimization problem is a version of the Mallows Cp criterion modified for application to the panel data setting. The forecast combination method performs well in Monte Carlo simulations and pseudo-out-of-sample forecasting applications.
Keywords: Forecast combination; Model averaging; Panel data; Mallows criterion; Bias correction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000704
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:1:p:142-164
DOI: 10.1016/j.ijforecast.2021.04.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().