Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems
Duarte Dinis,
Ana Barbosa-Póvoa and
Ângelo Palos Teixeira
International Journal of Forecasting, 2022, vol. 38, issue 1, 178-192
Abstract:
Despite the extensive amount of data generated and stored during the maintenance capacity planning process, Maintenance, Repair, and Overhaul (MRO) organizations have yet to explore their full potential in forecasting the required capacity to face future and unprecedented maintenance interventions. This paper explores the integration of time series forecasting capabilities in a tool for maintenance capacity planning of complex product systems (CoPS), intended to value data that is routinely generated and stored, but often disregarded by MROs. State space formulations with multiplicative errors for the simple exponential smoothing (SES), Holt’s linear method (HLM), additive Holt-Winters (AHW), and multiplicative Holt-Winters (MHW) are assessed using real data, comprised of 171 maintenance projects collected from a major Portuguese aircraft MRO. A state space formulation of the MHW, selected using the bias-corrected Akaike information criterion (AICc), is integrated in a Decision Support System (DSS) for capacity planning with probabilistic inference capabilities and used to forecast the workload probability distribution of a future and unprecedent maintenance intervention. The developed tool is validated by comparing forecasted values with workloads of a particular maintenance intervention and with a model simulating current forecasting practices employed by MROs.
Keywords: Forecasting; Capacity planning; Maintenance; Uncertainty modelling; Decision support system. (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000753
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:1:p:178-192
DOI: 10.1016/j.ijforecast.2021.05.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().