Combining forecasts for universally optimal performance
Wei Qian,
Craig A. Rolling,
Gang Cheng and
Yuhong Yang
International Journal of Forecasting, 2022, vol. 38, issue 1, 193-208
Abstract:
There are two potential directions of forecast combination: combining for adaptation and combining for improvement. The former direction targets the performance of the best forecaster, while the latter attempts to combine forecasts to improve on the best forecaster. It is often useful to infer which goal is more appropriate so that a suitable combination method may be used. This paper proposes an AI-AFTER approach that can not only determine the appropriate goal of forecast combination but also intelligently combine the forecasts to automatically achieve the proper goal. As a result of this approach, the combined forecasts from AI-AFTER perform well universally in both adaptation and improvement scenarios. The proposed forecasting approach is implemented in our R package AIafter, which is available at https://github.com/weiqian1/AIafter.
Keywords: AFTER; Combining forecasts; Model averaging; Regression; Statistical tests (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000765
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:1:p:193-208
DOI: 10.1016/j.ijforecast.2021.05.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().