EconPapers    
Economics at your fingertips  
 

Deep learning for modeling the collection rate for third-party buyers

Abdolreza Nazemi, Hani Rezazadeh, Frank J. Fabozzi and Markus Höchstötter

International Journal of Forecasting, 2022, vol. 38, issue 1, 240-252

Abstract: This study evaluates a wide range of machine learning techniques such as deep learning, boosting, and support vector regression to predict the collection rate of more than 65,000 defaulted consumer credits from the telecommunications sector that were bought by a German third-party company. Weighted performance measures were defined based on the value of exposure at default for comparing collection rate models. The approach proposed in this paper is useful for a third-party company in managing the risk of a portfolio of defaulted credit that it purchases. The main finding is that one of the machine learning models we investigate, the deep learning model, performs significantly better out-of-sample than all other methods that can be used by an acquirer of defaulted credits based on weighted-performance measures. By using unweighted performance measures, deep learning and boosting perform similarly. Moreover, we find that using a training set with a larger proportion of the dataset does not improve prediction accuracy significantly when deep learning is used. The general conclusion is that deep learning is a potentially performance-enhancing tool for credit risk management.

Keywords: Risk management; Collection rate; Deep learning; Machine learning; Weighted performance; Third-party buyers of consumer debt (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000686
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:1:p:240-252

DOI: 10.1016/j.ijforecast.2021.03.013

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:38:y:2022:i:1:p:240-252