EconPapers    
Economics at your fingertips  
 

Online hierarchical forecasting for power consumption data

Margaux Brégère and Malo Huard

International Journal of Forecasting, 2022, vol. 38, issue 1, 339-351

Abstract: This paper proposes a three-step approach to forecasting time series of electricity consumption at different levels of household aggregation. These series are linked by hierarchical constraints—global consumption is the sum of regional consumption, for example. First, benchmark forecasts are generated for all series using generalized additive models. Second, for each series, the aggregation algorithm ML-Poly, introduced by Gaillard, Stoltz, and van Erven in 2014, finds an optimal linear combination of the benchmarks. Finally, the forecasts are projected onto a coherent subspace to ensure that the final forecasts satisfy the hierarchical constraints. By minimizing a regret criterion, we show that the aggregation and projection steps improve the root mean square error of the forecasts. Our approach is tested on household electricity consumption data; experimental results suggest that successive aggregation and projection steps improve the benchmark forecasts at different levels of household aggregation.

Keywords: Adjusting forecasts; Combining forecasts; Demand forecasting; Electricity; Time series (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000947
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:1:p:339-351

DOI: 10.1016/j.ijforecast.2021.05.011

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:38:y:2022:i:1:p:339-351