A novel text-based framework for forecasting agricultural futures using massive online news headlines
Jianping Li,
Guowen Li,
Mingxi Liu,
Xiaoqian Zhu and
Lu Wei
International Journal of Forecasting, 2022, vol. 38, issue 1, 35-50
Abstract:
The agricultural futures prices are generally considered difficult to forecast because the causes of fluctuations are incredibly complicated. We propose a text-based forecasting framework, which can effectively identify and quantify factors affecting agricultural futures based on massive online news headlines. A comprehensive list of influential factors can be formed using a text mining method called topic modeling. A new sentiment-analysis-based way is designed to quantify the factors such as the weather and policies that are important yet difficult to quantify. The proposed framework is empirically tested at forecasting soybean futures prices in the Chinese market. Testing was based on 9715 online news headlines from July 19, 2012 to July 9, 2018. The results show that the identified influential factors and sentiment-based variables are effective, and the proposed framework performs significantly better in medium-term and long-term forecasting than the benchmark model.
Keywords: Agricultural futures; Price forecasting; Text analysis; Financial risk; Influential factors (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020300194
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:1:p:35-50
DOI: 10.1016/j.ijforecast.2020.02.002
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().