Crude oil price forecasting incorporating news text
Yun Bai,
Xixi Li,
Hao Yu and
Suling Jia
International Journal of Forecasting, 2022, vol. 38, issue 1, 367-383
Abstract:
Sparse and short news headlines can be arbitrary, noisy, and ambiguous, making it difficult for classic topic model LDA (latent Dirichlet allocation) designed for accommodating long text to discover knowledge from them. Nonetheless, some of the existing research about text-based crude oil forecasting employs LDA to explore topics from news headlines, resulting in a mismatch between the short text and the topic model and further affecting the forecasting performance. Exploiting advanced and appropriate methods to construct high-quality features from news headlines becomes crucial in crude oil forecasting. This paper introduces two novel indicators of topic and sentiment for the short and sparse text data to tackle this issue. Empirical experiments show that AdaBoost.RT with our proposed text indicators, with a more comprehensive view and characterization of the short and sparse text data, outperforms the other benchmarks. Another significant merit is that our method also yields good forecasting performance when applied to other futures commodities.
Keywords: Crude oil price; Text features; News headlines; Multivariate time series; Forecasting (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001060
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:1:p:367-383
DOI: 10.1016/j.ijforecast.2021.06.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().