Comparing the accuracy of several network-based COVID-19 prediction algorithms
Massimo A. Achterberg,
Bastian Prasse,
Long Ma,
Stojan Trajanovski,
Maksim Kitsak and
Piet Van Mieghem
International Journal of Forecasting, 2022, vol. 38, issue 2, 489-504
Abstract:
Researchers from various scientific disciplines have attempted to forecast the spread of coronavirus disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we combine all these approaches, we obtain the Network Inference-based Prediction Algorithm (NIPA). In this paper, we analyse a diverse set of COVID-19 forecast algorithms, including several modifications of NIPA. Among the algorithms that we evaluated, the original NIPA performed best at forecasting the spread of COVID-19 in Hubei, China and in the Netherlands. In particular, we show that network-based forecasting is superior to any other forecasting algorithm.
Keywords: Epidemiology; Network inference; Forecast accuracy; Bayesian methods; SIR model; Time series methods; Machine learning methods (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301552
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:2:p:489-504
DOI: 10.1016/j.ijforecast.2020.10.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().