EconPapers    
Economics at your fingertips  
 

Transparent modeling of influenza incidence: Big data or a single data point from psychological theory?

Konstantinos V. Katsikopoulos, Özgür Şimşek, Marcus Buckmann and Gerd Gigerenzer

International Journal of Forecasting, 2022, vol. 38, issue 2, 613-619

Abstract: Simple, transparent rules are often frowned upon while complex, black-box models are seen as holding greater promise. Yet in quickly changing situations, simple rules can protect against overfitting and adapt quickly. We show that the surprisingly simple recency heuristic forecasts more accurately than Google Flu Trends (GFT) which used big data analytics and a black-box algorithm. This heuristic predicts that “this week’s proportion of flu-related doctor visits equals the proportion from the most recent week.” It is based on psychological theory of how people deal with rapidly changing situations. Other theory-inspired heuristics have outperformed big data models in predicting outcomes, such as U.S. presidential elections, or other uncertain events, such as consumer purchases, patient hospitalizations, and terrorist attacks. Heuristics are transparent, clearly communicating the underlying rationale for their predictions. We advocate taking into account psychological principles that have evolved over millennia and using these as a benchmark when testing big data models.

Keywords: Google Flu Trends; Big data; Naïve forecasting; Recency; Simple heuristics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020301928
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:2:p:613-619

DOI: 10.1016/j.ijforecast.2020.12.006

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:38:y:2022:i:2:p:613-619