EconPapers    
Economics at your fingertips  
 

Regional heterogeneity and U.S. presidential elections: Real-time 2020 forecasts and evaluation

Rashad Ahmed and Mohammad Pesaran

International Journal of Forecasting, 2022, vol. 38, issue 2, 662-687

Abstract: This paper exploits cross-sectional variation at the level of U.S. counties to generate real-time forecasts for the 2020 U.S. presidential election. The forecasting models are trained on data covering the period 2000–2016, using high-dimensional variable selection techniques. Our county-based approach contrasts the literature that focuses on national and state level data but uses longer time periods to train their models. The paper reports forecasts of popular and electoral college vote outcomes and provides a detailed ex-post evaluation of the forecasts released in real time before the election. It is shown that all of these forecasts outperform autoregressive benchmarks. A pooled national model using One-Covariate-at-a-time-Multiple-Testing (OCMT) variable selection significantly outperformed all models in forecasting the U.S. mainland national vote share and electoral college outcomes (forecasting 236 electoral votes for the Republican party compared to 232 realized). This paper also shows that key determinants of voting outcomes at the county level include incumbency effects, unemployment, poverty, educational attainment, house price changes, and international competitiveness. The results are also supportive of myopic voting: economic fluctuations realized a few months before the election tend to be more powerful predictors of voting outcomes than their long-horizon analogs.

Keywords: Real-time forecasts; Popular and electoral college votes; Simultaneity; High dimensional forecasting models; Lasso; One covariate at a time multiple testing; OCMT (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001072
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:2:p:662-687

DOI: 10.1016/j.ijforecast.2021.06.007

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:intfor:v:38:y:2022:i:2:p:662-687