Forecasting corporate default risk in China
Xuan Zhang,
Yang Zhao and
Xiao Yao
International Journal of Forecasting, 2022, vol. 38, issue 3, 1054-1070
Abstract:
Default risk prediction can not only provide forward-looking and timely risk measures for regulators and investors, but also improve the stability of the financial system. However, the determinants of corporate default risk in China have not been well-identified. An empirical analysis was conducted using a unique dataset of default events in the Chinese market to fill this gap. First, we demonstrated that the default probability estimated by a structural model, which is widely used in the literature, do not fully reveal the default risk of firms in China. Second, we classified default events into minor and major defaults for empirical analysis. We found that firms that survive minor defaults behave differently from other bankrupt firms. Our results suggest that the determinants of corporate default risk in China and the United States differ. We also found that a firm’s continued increase in cash holdings is one of the most important signs of default. Overall, our study significantly improves the accuracy of forecasting corporate default risk in China.
Keywords: Default risk prediction; Major default; Minor default; China’s publicly listed firms; Logit model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000819
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:3:p:1054-1070
DOI: 10.1016/j.ijforecast.2021.04.009
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().