Mining semantic features in current reports for financial distress prediction: Empirical evidence from unlisted public firms in China
Cuiqing Jiang,
Ximei Lyu,
Yufei Yuan,
Zhao Wang and
Yong Ding
International Journal of Forecasting, 2022, vol. 38, issue 3, 1086-1099
Abstract:
It is difficult to predict the financial distress of unlisted public firms due to their longer disclosure cycle of accounting information and more inadequate continuity of market trading information compared to listed firms. In this paper, we propose a framework to predict the financial distress of unlisted public firms using current reports. Specifically, to better represent the meaning of current report texts, we propose a semantic feature extraction method based on a word embedding technology. Empirical results show that current reports contain more effective information for predicting the financial distress of unlisted public firms compared with periodic reports. In addition, semantic features extracted using our proposed method significantly improve the predictive performance, and their enhancing effect is superior to that of topic features and sentiment features. Our study also provides implications for stakeholders such as investors and creditors.
Keywords: Financial distress; Current report; Semantic feature; Word embedding; Unlisted public firm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:3:p:1086-1099
DOI: 10.1016/j.ijforecast.2021.06.011
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().