EconPapers    
Economics at your fingertips  
 

Anticipating special events in Emergency Department forecasting

Bahman Rostami-Tabar and Florian Ziel

International Journal of Forecasting, 2022, vol. 38, issue 3, 1197-1213

Abstract: Accurate daily forecast of Emergency Department (ED) attendance helps roster planners in allocating available resources more effectively and potentially influences staffing. Since special events affect human behaviours, they may increase or decrease the demand for ED services. Therefore, it is crucial to model their impact and use them to forecast future attendance to improve roster planning and avoid reactive strategies. In this paper, we propose, for the first time, a forecasting model to generate both point and probabilistic daily forecast of ED attendance. We model the impact of special events on ED attendance by considering real-life ED data. We benchmark the accuracy of our model against three time-series techniques and a regression model that does not consider special events. We show that the proposed model outperforms its benchmarks across all horizons for both point and probabilistic forecasts. Results also show that our model is more robust with an increasing forecasting horizon. Moreover, we provide evidence on how different types of special events may increase or decrease ED attendance. Our model can easily be adapted for use not only by EDs but also by other health services. It could also be generalised to include more types of special events.

Keywords: Forecasting; Emergency department; Forecast accuracy; Special events; Health (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020300017
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:3:p:1197-1213

DOI: 10.1016/j.ijforecast.2020.01.001

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:38:y:2022:i:3:p:1197-1213