Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana
Clement Twumasi and
Juliet Twumasi
International Journal of Forecasting, 2022, vol. 38, issue 3, 1258-1277
Abstract:
The major challenge in managing blood products lies in the uncertainty of blood demand and supply, with a trade-off between shortage and wastage, especially in most developing countries. Thus, reliable demand predictions can be imperative in planning voluntary blood donation campaigns and improving blood availability within Ghana hospitals. However, most historical datasets on blood demand in Ghana are predominantly contaminated with missing values and outliers due to improper database management systems. Consequently, time-series prediction can be challenging since data cleaning can affect models’ predictive power. Also, machine learning (ML) models’ predictive power for backcasting past years’ lost data is understudied compared to their forecasting abilities. This study thus aims to compare K-Nearest Neighbour regression (KNN), Generalised Regression Neural Network (GRNN), Neural Network Auto-regressive (NNAR), Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM) and Long Short-Term Memory (LSTM) models via a rolling-origin strategy, for forecasting and backcasting a blood demand data with missing values and outliers from a government hospital in Ghana. KNN performed well in forecasting blood demand (12.55% error); whereas, ELM achieved the highest backcasting power (19.36% error). Future studies can also employ ML algorithms as a good alternative for backcasting past values of time-series data that are time-reversible.
Keywords: Blood demand; Blood supply; Forecasting; Backcasting; Kalman smoothing; Imputation; Machine learning; Neural networks; Time-reversibility (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001710
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:3:p:1258-1277
DOI: 10.1016/j.ijforecast.2021.10.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().