Forecasting football results and exploiting betting markets: The case of “both teams to score”
Igor Barbosa da Costa,
Leandro Balby Marinho and
Carlos Eduardo Santos Pires
International Journal of Forecasting, 2022, vol. 38, issue 3, 895-909
Abstract:
The continuous growth of available football data presents unprecedented research opportunities for a better understanding of football dynamics. While many research works focus on predicting which team will win a match, other interesting questions, such as whether both teams will score in a game, are still unexplored and have gained momentum with the rise of betting markets. With this in mind, we investigate the following research questions in this paper: “How difficult is the ‘both teams to score’ (BTTS) prediction problem?”, “Are machine learning classifiers capable of predicting BTTS better than bookmakers?”, and “Are machine learning classifiers useful for devising profitable betting strategies in the BTTS market?”. We collected historical football data, extracted groups of features to represent the teams’ strengths, and fed these to state-of-the-art classification models. We performed a comprehensive set of experiments and showed that, although hard to predict, in some scenarios it is possible to outperform bookmakers, which are robust baselines per se. More importantly, in some cases it is possible to beat the market and devise profitable strategies based on machine learning algorithms. The results are encouraging and, besides shedding light on the problem, may provide novel insights for all kinds of football stakeholders.
Keywords: Football; Soccer prediction; Sports betting; Machine learning; Forecasting; Feature engineering (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001084
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:3:p:895-909
DOI: 10.1016/j.ijforecast.2021.06.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().