Cyberattack-resilient load forecasting with adaptive robust regression
Jieying Jiao,
Zefan Tang,
Peng Zhang,
Meng Yue and
Jun Yan
International Journal of Forecasting, 2022, vol. 38, issue 3, 910-919
Abstract:
Cyberattacks in power systems that alter the input data of a load forecasting model have serious, potentially devastating consequences. Existing cyberattack-resilient work focuses mainly on enhancing attack detection. Although some outliers can be easily identified, more carefully designed attacks can escape detection and impact load forecasting. Here, a cyberattack-resilient load forecasting approach based on an adaptive robust regression method is proposed, where the observations are trimmed based on their residuals and the proportion of the trim is adaptively determined by an estimation of the contaminated data proportion. An extensive comparison study shows that the proposed method outperforms the standard robust regression in various settings.
Keywords: Cyber security; Power systems; Load forecasting; Robust method; Regression model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001096
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:3:p:910-919
DOI: 10.1016/j.ijforecast.2021.06.009
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().