A data-driven approach to forecasting ground-level ozone concentration
Dario Marvin,
Lorenzo Nespoli,
Davide Strepparava and
Vasco Medici
International Journal of Forecasting, 2022, vol. 38, issue 3, 970-987
Abstract:
The ability to forecast the concentration of air pollutants in an urban region is crucial for decision-makers wishing to reduce the impact of pollution on public health through active measures (e.g. temporary traffic closures). In this study, we present a machine learning approach applied to forecasts of the day-ahead maximum value of ozone concentration for several geographical locations in southern Switzerland. Due to the low density of measurement stations and to the complex orography of the use-case terrain, we adopted feature selection methods instead of explicitly restricting relevant features to a neighborhood of the prediction sites, as common in spatio-temporal forecasting methods. We then used Shapley values to assess the explainability of the learned models in terms of feature importance and feature interactions in relation to ozone predictions. Our analysis suggests that the trained models effectively learned explanatory cross-dependencies among atmospheric variables. Finally, we show how weighting observations helps to increase the accuracy of the forecasts for specific ranges of ozone’s daily peak values.
Keywords: Shapley values; Genetic algorithms; Environmental forecasting; Evaluating forecasts; Multivariate time series (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001199
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:3:p:970-987
DOI: 10.1016/j.ijforecast.2021.07.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().