Simple averaging of direct and recursive forecasts via partial pooling using machine learning
YeonJun In and
Jae-Yoon Jung
International Journal of Forecasting, 2022, vol. 38, issue 4, 1386-1399
Abstract:
This article introduces the winning method at the M5 Accuracy competition. The presented method takes a simple manner of averaging the results of multiple base forecasting models that have been constructed via partial pooling of multi-level data. All base forecasting models of adopting direct or recursive multi-step forecasting methods are trained by the machine learning technique, LightGBM, from three different levels of data pools. At the competition, the simple averaging of the multiple direct and recursive forecasting models, called DRFAM, obtained the complementary effects between direct and recursive multi-step forecasting of the multi-level product sales to improve the accuracy and the robustness.
Keywords: Direct and recursive multi-step forecasting; Multi-level data; Forecast averaging; Machine learning; LightGBM (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001813
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:4:p:1386-1399
DOI: 10.1016/j.ijforecast.2021.11.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().