Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series
Ioannis Nasios and
Konstantinos Vogklis
International Journal of Forecasting, 2022, vol. 38, issue 4, 1448-1459
Abstract:
In this study, we addressed the problem of point and probabilistic forecasting by describing a blending methodology for machine learning models from the gradient boosted trees and neural networks families. These principles were successfully applied in the recent M5 Competition in both the Accuracy and Uncertainty tracks. The key points of our methodology are: (a) transforming the task into regression on sales for a single day; (b) information-rich feature engineering; (c) creating a diverse set of state-of-the-art machine learning models; and (d) carefully constructing validation sets for model tuning. We show that the diversity of the machine learning models and careful selection of validation examples are most important for the effectiveness of our approach. Forecasting data have an inherent hierarchical structure (12 levels) but none of our proposed solutions exploited the hierarchical scheme. Using the proposed methodology, we ranked within the gold medal range in the Accuracy track and within the prizes in the Uncertainty track. Inference code with pre-trained models are available on GitHub.11https://github.com/IoannisNasios/M5_Uncertainty_3rd_place.
Keywords: M5 Competition; Point forecast; Probabilistic forecast; Regression models; Gradient boosted trees; Neural networks; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000012
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:4:p:1448-1459
DOI: 10.1016/j.ijforecast.2022.01.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().