EconPapers    
Economics at your fingertips  
 

Towards a real-time prediction of waiting times in emergency departments: A comparative analysis of machine learning techniques

Elisabetta Benevento, Davide Aloini and Nunzia Squicciarini

International Journal of Forecasting, 2023, vol. 39, issue 1, 192-208

Abstract: Emergency Departments (EDs) can better manage activities and resources and anticipate overcrowding through accurate estimations of waiting times. However, the complex nature of EDs imposes a challenge on waiting time prediction. In this paper, we test various machine learning techniques, using predictive analytics, applied to two large datasets from real EDs. We evaluate the predictive ability of Lasso, Random Forest, Support Vector Regression, Artificial Neural Network, and the Ensemble Method, using different error metrics and computational times. To improve the prediction accuracy, new queue-based variables, that capture the current state of the ED, are defined as additional predictors. The results show that the Ensemble Method is the most effective at predicting waiting times. In terms of both accuracy and computational efficiency, Random Forest is a reasonable trade-off. The results have significant practical implications for EDs and hospitals, suggesting that a real-time performance monitoring system that supports operational decision-making is possible.

Keywords: Predictive analytics; Waiting time prediction; Machine learning; Healthcare management; Emergency department (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001692
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:1:p:192-208

DOI: 10.1016/j.ijforecast.2021.10.006

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:39:y:2023:i:1:p:192-208