Data-based priors for vector error correction models
Jan Prüser
International Journal of Forecasting, 2023, vol. 39, issue 1, 209-227
Abstract:
We propose two data-based priors for vector error correction models. Both priors lead to highly automatic approaches which require only minimal user input. For the first one, we propose a reduced rank prior which encourages shrinkage towards a low-rank, row-sparse, and column-sparse long-run matrix. For the second one, we propose the use of the horseshoe prior, which shrinks all elements of the long-run matrix towards zero. Two empirical investigations reveal that Bayesian vector error correction (BVEC) models equipped with our proposed priors scale well to higher dimensions and forecast well. In comparison to VARs in first differences, they are able to exploit the information in the level variables. This turns out to be relevant to improve the forecasts for some macroeconomic variables. A simulation study shows that the BVEC with data-based priors possesses good frequentist estimation properties.
Keywords: Bayesian vector autoregression; Cointegration; Forecasting; Shrinkage; Global-local prior; Sparsity; Big Data (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021001709
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:1:p:209-227
DOI: 10.1016/j.ijforecast.2021.10.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().