EconPapers    
Economics at your fingertips  
 

A mixture model for credit card exposure at default using the GAMLSS framework

Suttisak Wattanawongwan, Christophe Mues, Ramin Okhrati, Taufiq Choudhry and Mee Chi So

International Journal of Forecasting, 2023, vol. 39, issue 1, 503-518

Abstract: The Basel II and III Accords propose estimating the credit conversion factor (CCF) to model exposure at default (EAD) for credit cards and other forms of revolving credit. Alternatively, recent work has suggested it may be beneficial to predict the EAD directly, i.e.modelling the balance as a function of a series of risk drivers. In this paper, we propose a novel approach combining two ideas proposed in the literature and test its effectiveness using a large dataset of credit card defaults not previously used in the EAD literature. We predict EAD by fitting a regression model using the generalised additive model for location, scale, and shape (GAMLSS) framework. We conjecture that the EAD level and risk drivers of its mean and dispersion parameters could substantially differ between the debtors who hit the credit limit (i.e.“maxed out” their cards) prior to default and those who did not, and thus implement a mixture model conditioning on these two respective scenarios. In addition to identifying the most significant explanatory variables for each model component, our analysis suggests that predictive accuracy is improved, both by using GAMLSS (and its ability to incorporate non-linear effects) as well as by introducing the mixture component.

Keywords: Risk analysis; Basel Accords; Credit cards; Exposure at default; Generalised additive model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702100220X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:1:p:503-518

DOI: 10.1016/j.ijforecast.2021.12.014

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:39:y:2023:i:1:p:503-518