EconPapers    
Economics at your fingertips  
 

A Markov chain model for forecasting results of mixed martial arts contests

Benjamin Holmes, Ian G. McHale and Kamila Żychaluk

International Journal of Forecasting, 2023, vol. 39, issue 2, 623-640

Abstract: In this paper, we present a new methodology for forecasting the results of mixed martial arts contests. Our approach utilises data scraped from freely available websites to estimate fighters’ skills in various key aspects of the sport. With these skill estimates, we simulate the contest as an actual fight using Markov chains, rather than predicting a binary outcome. We compare the model’s accuracy to that of the bookmakers using their historical odds and show that the model can be used as the basis of a successful betting strategy.

Keywords: Bayesian methods; Gambling; Markov chain; Mixed martial arts; Probability forecasting; Sports betting; Sports forecasting; Simulation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000073
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:2:p:623-640

DOI: 10.1016/j.ijforecast.2022.01.007

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:623-640