EconPapers    
Economics at your fingertips  
 

Empirically-transformed linear opinion pools

Anthony Garratt, Timo Henckel and Shaun Vahey

International Journal of Forecasting, 2023, vol. 39, issue 2, 736-753

Abstract: The linear opinion pool (LOP) produces potentially non-Gaussian combination forecast densities. In this paper, we propose a computationally convenient transformation for the LOP to mirror the non-Gaussianity exhibited by the target variable. Our methodology involves a Smirnov transform to reshape the LOP combination forecasts using the empirical cumulative distribution function. We illustrate our empirically transformed opinion pool (EtLOP) approach with an application examining quarterly real-time forecasts for U.S. inflation evaluated on a sample from 1990:1 to 2020:2. EtLOP improves performance by approximately 10% to 30% in terms of the continuous ranked probability score across forecasting horizons.

Keywords: Density forecast combination; Linear opinion pool; Smirnov transform; Inflation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000322
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Empirically-transformed linear opinion pools (2019) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:2:p:736-753

DOI: 10.1016/j.ijforecast.2022.02.003

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:736-753