Differing behaviours of forecasters of UK GDP growth
Nigel Meade and
Ciaran Driver
International Journal of Forecasting, 2023, vol. 39, issue 2, 772-790
Abstract:
The literature suggests that the dispersion of agents’ forecasts of an event flows from heterogeneity of beliefs and models. Using a data set of fixed event point forecasts of UK GDP growth by a panel of independent forecasters published by HM Treasury, we investigate three questions concerning this dispersion: (a) Are agent’s beliefs randomly distributed or do agents fall into groups with similar beliefs? (b) as agents revise their forecasts, what roles are played by their previous and consensus forecasts? and (c) is an agent’s private information of persistent value? We find that agents fall into four clusters, a large majority, a few pessimists, and two idiosyncratic agents. Our proposed model of forecast revisions shows agents are influenced positively by a change in the consensus forecast and negatively influenced by the previous distance of their forecast from the consensus. We show that the forecasts of a minority of agents significantly lead the consensus.
Keywords: GDP forecasts; Fixed event forecasting; Herding; Cluster analysis; Granger causality (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000334
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:2:p:772-790
DOI: 10.1016/j.ijforecast.2022.02.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().