A copula-based time series model for global horizontal irradiation
Alfred Müller and
Matthias Reuber
International Journal of Forecasting, 2023, vol. 39, issue 2, 869-883
Abstract:
The increasing importance of solar power for electricity generation leads to increasing demand for probabilistic forecasting of local and aggregated photovoltaic (PV) yields. Based on publicly available irradiation data, this paper uses an indirect modeling approach for hourly medium to long-term local PV yields. We suggest a time series model for global horizontal irradiation that allows for multivariate probabilistic forecasts for arbitrary time horizons. It features several important stylized facts. Sharp time-dependent lower and upper bounds of global horizontal irradiations are estimated. The parameters of the beta distributed marginals of the transformed data are allowed to be time-dependent. A copula-based time series model is introduced for the hourly and daily dependence structure based on simple vine copulas with so-called tail dependence. Evaluation methods based on scoring rules are used to compare the model’s power for multivariate probabilistic forecasting with other models used in the literature showing that our model outperforms other models in many respects.
Keywords: Probabilistic solar power forecasting; Global horizontal irradiation; Probabilistic scenario generation; Copula models; Time series model; Tail dependence; Scoring rules (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000401
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:2:p:869-883
DOI: 10.1016/j.ijforecast.2022.02.011
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().