EconPapers    
Economics at your fingertips  
 

The RWDAR model: A novel state-space approach to forecasting

Giacomo Sbrana and Andrea Silvestrini

International Journal of Forecasting, 2023, vol. 39, issue 2, 922-937

Abstract: This paper introduces the Random Walk with Drift plus AutoRegressive model (RWDAR) for time-series forecasting. Owing to the presence of a random walk plus drift term, this model shares some similarities with the Theta model of Assimakopoulos and Nikolopoulos (2000). However, the addition of a first-order autoregressive term in the state equation provides additional adaptability and flexibility. Indeed, it is shown that RWDAR tends to outperform the Theta model when forecasting both stationary and nearly non-stationary time series. This paper also proposes a simple estimation method for the RWDAR model based on the solution of the algebraic Riccati equation for the prediction error covariance of the state vector. Simulation results show that this estimator performs as well as the standard Kalman filter approach. Finally, using yearly data from the M3 and M4 competition datasets, it is found that RWDAR outperforms traditional forecasting methods.

Keywords: Theta method; Kalman gain; Forecasting; M3 and M4 competitions; Approximate maximum likelihood estimation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000437
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:2:p:922-937

DOI: 10.1016/j.ijforecast.2022.03.003

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:922-937