Deep learning models for visibility forecasting using climatological data
Luz C. Ortega,
Luis Daniel Otero,
Mitchell Solomon,
Carlos E. Otero and
Aldo Fabregas
International Journal of Forecasting, 2023, vol. 39, issue 2, 992-1004
Abstract:
Low visibility conditions affect safety and traffic operations, leading to adverse scenarios that often result in serious accidents. Due to the complexity and variability associated with modeling weather variables, visibility forecasting remains a highly challenging task and a matter of significant interest for transportation agencies nationwide. Given that the literature on single-step visibility forecasting is very scarce, this study explores the use of deep learning models for single-step visibility forecasting using time series climatological data. Five different deep learning models were developed, trained, and tested using data from two weather stations located in the US state of Florida, which is one of the top states nationwide dealing with low visibility problems. The authors provide discussions of the models’ results and areas for future research.
Keywords: Weather forecasting; Neural network; Visibility forecast; Time series; Fog forecasting (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000498
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:2:p:992-1004
DOI: 10.1016/j.ijforecast.2022.03.009
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().