EconPapers    
Economics at your fingertips  
 

Forecasting short-term defaults of firms in a commercial network via Bayesian spatial and spatio-temporal methods

Claudia Berloco, Raffaele Argiento and Silvia Montagna

International Journal of Forecasting, 2023, vol. 39, issue 3, 1065-1077

Abstract: To protect financial institutions from unexpected credit losses, during the monitoring phase of granted loans it is of primary importance to foresee any evidence of a contagion of liquidity distress across a network of firms. This term indicates a situation of lack of solvency of a firm (e.g., a customer) that propagates to other firms (e.g, its suppliers), which could consequently face challenges in repaying their own granted loans. In this paper, we look for the evidence of contagion of liquidity distress on an Intesa Sanpaolo proprietary dataset by means of Bayesian spatial and spatio-temporal models. Our results indicate that such models can detect cases of distress not yet apparent from covariate information collected on the firms by instead borrowing information from the network, leading to improved forecasting performance on the prediction of short-term default with respect to state-of-the-art methods.

Keywords: Credit risk; Bayesian spatio-temporal models; Conditional autoregressive models; Complex networks; Contagion effect (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000632
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:3:p:1065-1077

DOI: 10.1016/j.ijforecast.2022.05.003

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:39:y:2023:i:3:p:1065-1077