Distributed ARIMA models for ultra-long time series
Xiaoqian Wang,
Yanfei Kang,
Rob Hyndman and
Feng Li ()
International Journal of Forecasting, 2023, vol. 39, issue 3, 1163-1184
Abstract:
Providing forecasts for ultra-long time series plays a vital role in various activities, such as investment decisions, industrial production arrangements, and farm management. This paper develops a novel distributed forecasting framework to tackle the challenges of forecasting ultra-long time series using the industry-standard MapReduce framework. The proposed model combination approach retains the local time dependency. It utilizes a straightforward splitting across samples to facilitate distributed forecasting by combining the local estimators of time series models delivered from worker nodes and minimizing a global loss function. Instead of unrealistically assuming the data generating process (DGP) of an ultra-long time series stays invariant, we only make assumptions on the DGP of subseries spanning shorter time periods. We investigate the performance of the proposed approach with AutoRegressive Integrated Moving Average (ARIMA) models using the real data application as well as numerical simulations. Our approach improves forecasting accuracy and computational efficiency in point forecasts and prediction intervals, especially for longer forecast horizons, compared to directly fitting the whole data with ARIMA models. Moreover, we explore some potential factors that may affect the forecasting performance of our approach.
Keywords: Ultra-long time series; Distributed forecasting; ARIMA models; Least squares approximation; MapReduce (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000619
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Distributed ARIMA Models for Ultra-long Time Series (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:3:p:1163-1184
DOI: 10.1016/j.ijforecast.2022.05.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().