Penalized estimation of panel vector autoregressive models: A panel LASSO approach
Annika Camehl
International Journal of Forecasting, 2023, vol. 39, issue 3, 1185-1204
Abstract:
This paper proposes LASSO estimation specific for panel vector autoregressive (PVAR) models. The penalty term allows for shrinkage for different lags, for shrinkage towards homogeneous coefficients across panel units, for penalization of lags of variables belonging to another cross-sectional unit, and for varying penalization across equations. The penalty parameters therefore build on time series and cross-sectional properties that are commonly found in PVAR models. Simulation results point towards advantages of using the proposed LASSO for PVAR models over ordinary least squares in terms of forecast accuracy. An empirical forecasting application including 20 countries supports these findings.
Keywords: Forecasting; Model selection; Multi-country model; Shrinkage estimation; Sparse estimation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702200067X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:3:p:1185-1204
DOI: 10.1016/j.ijforecast.2022.05.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().