Forecasting electricity prices using bid data
Aitor Ciarreta,
Blanca Martinez () and
Shahriyar Nasirov
International Journal of Forecasting, 2023, vol. 39, issue 3, 1253-1271
Abstract:
Market liberalization and the expansion of variable renewable energy sources in power systems have made the dynamics of electricity prices more uncertain, leading them to show high volatility with sudden, unexpected price spikes. Thus, developing more accurate price modeling and forecasting techniques is a challenge for all market participants and regulatory authorities. This paper proposes a forecasting approach based on using auction data to fit supply and demand electricity curves. More specifically, we fit linear (LinX-Model) and logistic (LogX-Model) curves to historical sale and purchase bidding data from the Iberian electricity market to estimate structural parameters from 2015 to 2019. Then we use time series models on structural parameters to predict day-ahead prices. Our results provide a solid framework for forecasting electricity prices by capturing the structural characteristics of markets.
Keywords: Electricity markets; Linear functions; Logistic functions; Time series models; Price forecasting (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000711
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:3:p:1253-1271
DOI: 10.1016/j.ijforecast.2022.05.011
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().