Daily peak electrical load forecasting with a multi-resolution approach
Yvenn Amara-Ouali,
Matteo Fasiolo,
Yannig Goude and
Hui Yan
International Journal of Forecasting, 2023, vol. 39, issue 3, 1272-1286
Abstract:
In the context of smart grids and load balancing, daily peak load forecasting has become a critical activity for stakeholders in the energy industry. An understanding of peak magnitude and timing is paramount for the implementation of smart grid strategies such as peak shaving. The modelling approach proposed in this paper leverages high-resolution and low-resolution information to forecast daily peak demand size and timing. The resulting multi-resolution modelling framework can be adapted to different model classes. The key contributions of this paper are (a) a general and formal introduction to the multi-resolution modelling approach, (b) a discussion of modelling approaches at different resolutions implemented via generalised additive models and neural networks, and (c) experimental results on real data from the UK electricity market. The results confirm that the predictive performance of the proposed modelling approach is competitive with that of low- and high-resolution alternatives.
Keywords: Generalised additive models; Neural networks; Peak load forecasting; Smart grids; Automated feature engineering; Multi-resolution (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000929
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:3:p:1272-1286
DOI: 10.1016/j.ijforecast.2022.06.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().