Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility
Yaojie Zhang,
Mengxi He,
Yudong Wang and
Chao Liang
International Journal of Forecasting, 2023, vol. 39, issue 3, 1318-1332
Abstract:
This paper constructs an aligned global economic policy uncertainty (GEPU) index based on a modified machine learning approach. We find that the aligned GEPU index is an informative predictor for forecasting crude oil market volatility both in- and out-of-sample. Compared to general GEPU indices without supervised learning, well-recognized economic variables, and other popular uncertainty indicators, the aligned GEPU index is rather powerful and can provide preponderant or complementary information. The trading strategy based on the aligned GEPU index can also generate sizable economic gains. The statistical source of the aligned GEPU index’s predictive power is that it can learn both the magnitude and sign of national EPU variables’ predictive ability and thus yields reasonable and informative loadings. On the other hand, the economic driving force probably stems from the ability for forecasting the shocks of oil-related fundamentals.
Keywords: Global economic policy uncertainty; Crude oil market; Volatility forecasting; Supervised learning; Crude oil fundamentals (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022001005
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:3:p:1318-1332
DOI: 10.1016/j.ijforecast.2022.07.002
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().