Volatility analysis for the GARCH–Itô–Jumps model based on high-frequency and low-frequency financial data
Jin-Yu Fu,
Jin-Guan Lin and
Hong-Xia Hao
International Journal of Forecasting, 2023, vol. 39, issue 4, 1698-1712
Abstract:
This paper introduces a model that can accommodate both the continuous-time-diffusion and discrete-time mixed-GARCH–Jump models by embedding the discrete mixed-GARCH-Jump structure in the continuous volatility process. The key feature of the proposed model is that the corresponding conditional integrated volatility adopts the mixed-GARCH-Jump structure that accounts for the effect of jumps on future volatility. A Griddy–Gibbs sampler approach is proposed to estimate parameters, and volatility forecasting and value-at-risk forecasting based on the peaks-over-threshold method are developed. Simulations are carried out to check the finite sample performance of the proposed methodology, and empirical studies show that, in general, volatility is heavily influenced by the continuous innovations, rather than the extreme reactions. We find that both the simulation and empirical results in most cases support the proposed model.
Keywords: Itô process; GARCH model; Additive jumps; Griddy–Gibbs sampler; Volatility and VaR forecasting; Peaks over threshold (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022001157
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:4:p:1698-1712
DOI: 10.1016/j.ijforecast.2022.08.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().