LASSO principal component averaging: A fully automated approach for point forecast pooling
Bartosz Uniejewski and
Katarzyna Maciejowska
International Journal of Forecasting, 2023, vol. 39, issue 4, 1839-1852
Abstract:
This paper develops a novel, fully automated forecast averaging scheme which combines LASSO estimation with principal component averaging (PCA). LASSO-PCA (LPCA) explores a pool of predictions based on a single model but calibrated to windows of different sizes. It uses information criteria to select tuning parameters and hence reduces the impact of researchers’ ad hoc decisions. The method is applied to average predictions of hourly day-ahead electricity prices over 650 point forecasts obtained with various lengths of calibration windows. It is evaluated on four European and American markets with an out-of-sample period of almost two and a half years and compared to other semi- and fully automated methods, such as the simple mean, AW/WAW, LASSO, and PCA. The results indicate that LASSO averaging is very efficient in terms of forecast error reduction, whereas PCA is robust to the selection of the specification parameter. LPCA inherits the advantages of both methods and outperforms other approaches in terms of the mean absolute error, remaining insensitive to the choice of a tuning parameter.
Keywords: Electricity price forecasting; EPF; Averaging; PCA; Principal component analysis; Regularization; LASSO; Day-ahead market; Risk management (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022001352
Full text for ScienceDirect subscribers only
Related works:
Working Paper: LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:4:p:1839-1852
DOI: 10.1016/j.ijforecast.2022.09.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().