Optimal hierarchical EWMA forecasting
Giacomo Sbrana and
Matteo Pelagatti
International Journal of Forecasting, 2024, vol. 40, issue 2, 616-625
Abstract:
Prediction of demand at different levels of aggregation is a crucial task in many business and industrial activities. This task may be extremely challenging when the number of time series increases together with the number of parameters governing the dynamics of the underlying model. This paper proposes theoretical and empirical contributions providing practical tools for managers needing efficient, flexible, and timely instruments. We first derive optimal results for predicting a system of time series following multivariate Exponentially Weighted Moving Average (EWMA) dynamics. Our results have relevant practical consequences. Indeed, we propose a fast EM algorithm that maximizes the Gaussian multivariate likelihood regardless of the model’s dimension. Secondly, we show optimal results for the hierarchies, deriving closed-form results for the underlying parameters. Finally, using more than one hundred Walmart sales time series, we show that our approach is competitive with the optimal forecast reconciliation approach based on univariate forecasts.
Keywords: Multivariate EWMA; State-space models; Kalman filter; Likelihood estimation; Expectation-maximization algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702200173X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:2:p:616-625
DOI: 10.1016/j.ijforecast.2022.12.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().