Personalized choice model for forecasting demand under pricing scenarios with observational data—The case of attended home delivery
Özden Gür Ali and
Pedro Amorim
International Journal of Forecasting, 2024, vol. 40, issue 2, 706-720
Abstract:
Discrete choice models can forecast market shares and individual choice probabilities with different price and alternative set scenarios. This work introduces a method to personalize choice models involving causal variables, such as price, using rich observational data. The model provides interpretable customer- and context-specific preferences, and price sensitivity, with an estimation procedure that uses orthogonalization. We caution against the naïve use of regularization to deal with the high-dimensional observational data challenge. We experiment with the attended home delivery (AHD) slot choice problem using data from a European online retailer. Our results indicate that while the popular non-personalized multinomial logit (MNL) model does very well at the aggregate (day–slot) level, personalization provides significantly and substantially more accurate predictions at the individual–context level. But the ”naïve” personalization approach using regularization without orthogonalization wrongly predicts that the choice probability will increase if the slot price increases, rendering it unfit for forecasting demand with pricing scenarios. The proposed method avoids this problem. Further, we introduce features based on potential consideration sets in the AHD slot choice context that increase accuracy and allow for more realistic substitution patterns than the proportional substitution implied by MNL.
Keywords: Personalization; Choice model; Orthogonalization; Causal effect; Price sensitivity; Substitution pattern; Attended home delivery; Regularization; Consideration set; Interpretable model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207023000444
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:2:p:706-720
DOI: 10.1016/j.ijforecast.2023.04.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().