Forecasting euro area inflation using a huge panel of survey expectations
Florian Huber,
Luca Onorante and
Michael Pfarrhofer
International Journal of Forecasting, 2024, vol. 40, issue 3, 1042-1054
Abstract:
In this paper, we forecast euro area inflation and its main components using a massive number of time series on survey expectations obtained from the European Commission’s Business and Consumer Survey. To make the estimation of such a huge model tractable, we use recent advances in computational statistics to carry out posterior simulation and inference. Our findings suggest that including a wide range of firms’ and consumers’ opinions about future economic developments offers useful information to forecast prices and assess tail risks to inflation. These predictive improvements arise from surveys related to expected inflation and other questions related to the general economic environment. Finally, we find that firms’ expectations about the future seem to have more predictive content than consumer expectations.
Keywords: Tail forecasting; Big data; Phillips curves; Density forecasts; Business and consumer survey (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702300095X
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Forecasting euro area inflation using a huge panel of survey expectations (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:3:p:1042-1054
DOI: 10.1016/j.ijforecast.2023.09.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().