Demand forecasting under lost sales stock policies
Juan R. Trapero,
Enrique Holgado de Frutos and
Diego J. Pedregal
International Journal of Forecasting, 2024, vol. 40, issue 3, 1055-1068
Abstract:
Demand forecasting is a crucial task within supply chain management. Stock control policies are directly affected by the precision of probabilistic demand forecasts. For instance, safety stocks and reorder points are based on those forecasts. However, forecasting and replenishment policies have typically been studied separately. In this work, we explore the influence of inventory assumptions on the selection of the forecasting model. In particular, we consider when the stock policy follows a lost sales context and the demand is estimated by means of sales data. In that case, forecasting models should use censored demand estimations. Unfortunately, the literature about censored demand forecasting remains very limited, without an accepted general solution for this problem. In this work, we bridge that gap by proposing the Tobit Kalman filter (TKF). To the best of our knowledge, this is the first time that the TKF has been applied to supply chain demand forecasting, and this approach may represent a general solution for lost sales contexts. The TKF is compared with a previous ad hoc censored demand forecasting solution that is based on single exponential smoothing. In addition, we show the performance of the TKF when dealing with trends where ad hoc approaches are not available for use as benchmarks. To express the potential benefits of the proposed approach in terms of costs and the service level, a newsvendor stock policy is employed. Simulated demand data and a case study are used to illustrate the significant advantages of the proposed tool.
Keywords: Forecasting; Censored data; Tobit Kalman filter; Supply chain management; Inventory (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207023000961
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:3:p:1055-1068
DOI: 10.1016/j.ijforecast.2023.09.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().