Improving geopolitical forecasts with 100 brains and one computer
Hilla Shinitzky,
Yhonatan Shemesh,
David Leiser and
Michael Gilead
International Journal of Forecasting, 2024, vol. 40, issue 3, 958-970
Abstract:
The ability to accurately predict future events is critical in numerous areas of human life. Past research has shown that human reasoning can usefully predict geopolitical outcomes, but such forecasts are still far from perfect. In the current work, we investigate whether machine learning can help predict whether people’s forecasts are likely to be correct. We rely on data from a geopolitical forecasting contest where participants provided a total of 1530 predictions accompanied by written rationales. We extracted various features (e.g., forecasters’ psychological traits, the linguistic aspects of the rationales, and peer evaluations), trained a machine learning model to predict the accuracy of prediction, and validated it on held-out data. The results showed that the model was able to predict the accuracy of a prediction with excellent accuracy. A theoretical simulation shows that aggregating predictions based on the output of our prediction model can yield highly accurate forecasts. We conclude that combining human intelligence with machine learning algorithms can make the future more predictable.
Keywords: Forecasting; Judgment; Machine learning; Language; Aggregation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207023000791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:3:p:958-970
DOI: 10.1016/j.ijforecast.2023.08.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().