Network time series forecasting using spectral graph wavelet transform
Kyusoon Kim and
Hee-Seok Oh
International Journal of Forecasting, 2024, vol. 40, issue 3, 971-984
Abstract:
We propose a novel method for forecasting network time series that occur in graphs or networks. Our approach is based on a spectral graph wavelet transform (SGWT) that provides the localized behavior of graph signals around each node. The proposed method improves forecasting performance over other existing methods. In particular, the advantages of the proposed method stand out when signals observed on a graph are inhomogeneous or non-stationary. We demonstrate the strength of the proposed approach through real-world data analysis. This analysis uses two network time series datasets: the daily number of people getting on and off the Seoul Metropolitan Subway, and daily Covid-19 confirmed cases reported in South Korea. We further conduct a simulation study to evaluate the effectiveness of the proposed method.
Keywords: Forecasting; Graph Fourier transform; Graph signals; Graph wavelet transform; Network time series (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702300081X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:3:p:971-984
DOI: 10.1016/j.ijforecast.2023.08.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().