Conditionally optimal weights and forward-looking approaches to combining forecasts
Christopher Gibbs and
Andrey Vasnev
International Journal of Forecasting, 2024, vol. 40, issue 4, 1734-1751
Abstract:
In forecasting, there is a tradeoff between in-sample fit and out-of-sample forecast accuracy. Parsimonious model specifications typically outperform richer model specifications. Consequently, information is often withheld from a forecast to prevent over-fitting the data. We show that one way to exploit this information is through forecast combination. Optimal combination weights in this environment minimize the conditional mean squared error that balances the conditional bias and the conditional variance of the combination. The bias-adjusted conditionally optimal forecast weights are time varying and forward looking. Real-time tests of conditionally optimal combinations of model-based forecasts and surveys of professional forecasters show significant gains in forecast accuracy relative to standard benchmarks for inflation and other macroeconomic variables.
Keywords: Forecast combination; Conditionally optimal weights; Forecast combination puzzle; Inflation; Phillips curve (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702400027X
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Conditionally Optimal Weights and Forward-Looking Approaches to Combining Forecasts (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:4:p:1734-1751
DOI: 10.1016/j.ijforecast.2024.03.002
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().