A modified VAR-deGARCH model for asynchronous multivariate financial time series via variational Bayesian inference
Wei-Ting Lai,
Ray-Bing Chen and
Shih-Feng Huang
International Journal of Forecasting, 2025, vol. 41, issue 1, 345-360
Abstract:
This study proposes a modified VAR-deGARCH model, denoted by M-VAR-deGARCH, for modeling asynchronous multivariate financial time series with GARCH effects and simultaneously accommodating the latest market information. A variational Bayesian (VB) procedure is developed for the M-VAR-deGARCH model to infer structure selection and parameter estimation. We conduct extensive simulations and empirical studies to evaluate the fitting and forecasting performance of the M-VAR-deGARCH model. The simulation results reveal that the proposed VB procedure produces satisfactory selection performance. In addition, our empirical studies find that the latest market information in Asia can provide helpful information to predict market trends in Europe and South Africa, especially when momentous events occur.
Keywords: Asynchronous time series; GARCH; Variable selection; Variational Bayesian inference; Vector autoregressive model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024000566
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:1:p:345-360
DOI: 10.1016/j.ijforecast.2024.06.002
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().