EconPapers    
Economics at your fingertips  
 

Forecasting realized volatility with spillover effects: Perspectives from graph neural networks

Chao Zhang, Xingyue Pu, Mihai Cucuringu and Xiaowen Dong

International Journal of Forecasting, 2025, vol. 41, issue 1, 377-397

Abstract: We present a novel nonparametric methodology for modeling and forecasting multivariate realized volatilities using customized graph neural networks to incorporate spillover effects across stocks. The proposed model offers the benefits of incorporating spillover effects from multi-hop neighbors, capturing nonlinear relationships, and flexible training with different loss functions. The empirical findings suggest that incorporating spillover effects from multi-hop neighbors alone does not yield a clear advantage in terms of predictive accuracy. Furthermore, modeling nonlinear spillover effects enhances the forecasting accuracy of realized volatilities, particularly for short-term horizons of up to one week. More importantly, our results consistently indicate that training with the quasi-likelihood loss leads to substantial improvements in model performance compared to the commonly used mean squared error, primarily due to its superior handling of heteroskedasticity. A comprehensive series of empirical evaluations in alternative settings confirm the robustness of our results.

Keywords: Graph neural network; Realized volatility; Spillover effect; Quasi-likelihood; Nonlinearity (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207024000967
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:1:p:377-397

DOI: 10.1016/j.ijforecast.2024.09.002

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:377-397